

Markscheme

November 2018

Physics

Standard level

Paper 3

22 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Q	Question		Answers	Notes	Total
1.	а		$m^{\frac{3}{2}}$ \checkmark	Accept other power of tens multiples of $m^{\frac{3}{2}}$, eg: $cm^{\frac{3}{2}}$.	1
1.	b		measured uncertainties «for one oscillation and for 20 oscillations» are the same/similar/OWTTE		
			OR		2
			% uncertainty is less for 20 oscillations than for one ✔		
			dividing «by 20» / finding mean reduces the random error ✓		

(Question 1 continued)

C	Question		Answers	Notes	Total
1.	С	i	Straight line touching at least 3 points drawn across the range \checkmark $ \begin{array}{cccccccccccccccccccccccccccccccccc$	It is not required to extend the line to pass through the origin.	1
1.	С	ii	theory predicts proportional relation $\mbox{${\tt w}$} T \propto \frac{1}{d}$, slope $= Td = \frac{c}{\sqrt{g}} = {\rm constant} \mbox{${\tt w}$} \checkmark$ the graph is $\mbox{${\tt w}$}$ line through the origin $\mbox{${\tt w}$}$		2

(Question 1 continued)

C	uestion	Answers	Notes	Total
1.	d	correctly determines gradient using points where ΔT≥1.5s OR correctly selects a single data point with T≥1.5s ✓ manipulation with formula, any new and correct expression to enable g to be determined ✓	Allow range 0.51 to 0.57.	
		Calculation of g ✓ With g in range 8.6 and 10.7 «m s ⁻² » ✓		4

C	uestion	Answers	Notes	Total
2.	а	to provide a constant heating rate / power OR		1
2.	b	to have m proportional to $t \checkmark$ due to heat losses $\checkmark VIt$ is larger than heat into liquid» \checkmark L_{\lor} calculated will be larger \checkmark		2
2.	С	heat losses will be similar / the same for both experiments OR heat loss presents systematic error ✓ taking the difference cancels/eliminates the effect of these losses OR use a graph to eliminate the effect ✓		2

Section B

Option A — Relativity

Q	Question		Answers	Notes	Total
3.	а		a set of rulers and clocks / set of coordinates to record the position and time of events ✓		1
3.	b	i	the time in frame S' is $t' = \frac{L}{c}$ \checkmark but time is absolute in Galilean relativity so is the same in S \checkmark ALTERNATIVE 2: In frame S, light rays travel at $c + v$ \checkmark so $t = \frac{L}{(c+v)-v} = \frac{L}{c}$ \checkmark	In Alternative 1, they must refer to S'	2
3.	b	ii	$x = x' + vt$ and $x' = L$ \checkmark «substitution to get answer»		1

C	uesti	on	Answers	Notes	Total
4.	а		$\frac{0.82c + 0.40c}{1 + \frac{0.82c \times 0.40c}{c^2}} \checkmark$ 0.92c \checkmark		2
4.	b	i	$\Delta t' = \frac{120}{0.40c} \checkmark$ $\Delta t' = 1.0 \times 10^{-6} \text{ (s)} \checkmark$		2
4.	b	ii	$\gamma = \frac{1}{\sqrt{1 - 0.82^2}} = x \cdot 1.747 \checkmark$ $\Delta t = \frac{v \cdot \Delta t'}{c^2} = 1.747 \times \left(1.0 \times 10^{-6} + \frac{0.82c \times 120}{c^2}\right)$ OR $\Delta t = \frac{120}{1.747 \times (0.92 - 0.82)c} \checkmark$ $2.3 \times 10^{-6} \text{ s.s. } \checkmark$		3

Q	uestic	on	Answers	Notes	Total
5.	a	-	$\gamma = \frac{1}{\sqrt{1 - 0.745^2}} = 1.499 \checkmark$ $x' = \frac{1}{\sqrt{1 - 0.745^2}} = 1.499 \times (1.0 - 0) \checkmark$ $x' = 1.5 \text{ m}$		2
5.	а	ii	$t' = \mathscr{C}_{vx}\left(t - \frac{vx}{c^2}\right) = x \cdot 1.499 \times \left(0 - \frac{0.745c \times 1}{c^2}\right) \mathscr{C}_{v} = -\frac{1.11}{c} \times \frac{1.11}{c}$ $\mathscr{C}_{vx}(t' = -1.1m)$		1

(Question 5 continued)

C	Questi	on	Answers	Notes	Total
5.	b	i	line through event E parallel to ct' axis meeting x' axis and labelled P ✓	ct S' frame S frame	1

(Question 5 continued)

C	uestic	on	Answers	Notes	Total
5.	b	ii	point on x' axis about $\frac{2}{3}$ of the way to P labelled Q \checkmark	Ct S' frame Q S frame	1

(Question 5 continued)

C	uesti	on	Answers	Notes	Total
5.	С	i	ends of rod must be recorded at the same time in frame S' ✓ any vertical line from E crossing x', no label required ✓ right-hand end of rod intersects at R «whose co-ordinate is less than 1.0 m» ✓	S' frame S frame S frame	3
5.	С	ii	0.7 m ✓		1

Option B — Engineering physics

Q	uestic	on	Answers	Notes	Total
6.	а		taking torques about the pivot $R \times 4.00 = 36.0 \times 2.5$ \(2
			R = 22.5 «N» ✓		_
6.	b	i	$36.0 \times 2.50 = 30.6 \times \alpha $		
			$\alpha = 2.94 \text{ «rad s}^{-2} \text{ » } \checkmark$		2
6.	b	ii	the equation can be applied only when the angular acceleration is constant ✓		
			any reasonable argument that explains torque is not constant, giving non constant acceleration ✓		2
6.	С	i	«from conservation of energy» Change in GPE = Change in rotational KE ✓		
			$W\frac{L}{2} = \frac{1}{2}I\omega^2 \checkmark$		
			$\omega = \sqrt{\frac{36.0 \times 5.00}{30.6}} \ \checkmark$		3
			$\omega = 2.4254 \text{ rad s}^{-1}$		
6.	С	ii	$L = 30.6 \times 2.43 = 74.4 \text{ «Js.»} \checkmark$		1

C	uesti	on	Answers	Notes	Total
7.	а	i	ALTERNATIVE 1: $P_{c} = P_{B} = \frac{P_{A}V_{A}}{V_{B}} \checkmark$ $= \frac{2.8 \times 10^{6} \times 1 \times 10^{-4}}{2.8 \times 10^{-4}} = 1.00 \times 10^{6} Pa \checkmark$ ALTERNATIVE 2 $2.80 \times 10^{6} \times 1.00^{\frac{5}{3}} = P_{c} \times 1.85^{\frac{5}{3}} \checkmark$ $P_{c} = 2.80 \times 10^{6} \times \frac{1.00^{\frac{5}{3}}}{1.85^{\frac{5}{3}}} = 1.00 \times 10^{6} Pa \checkmark$		2
7.	а	ii	ALTERNATIVE 1: Since $T_B = T_A$ then $T_C = \frac{V_C T_B}{V_B}$ \checkmark $= \frac{1.85 \times 385}{2.8} \ll = 254.4 \text{ K. w. } \checkmark$ ALTERNATIVE 2: $\frac{2.80 \times 1.00}{385} = \frac{1.00 \times 1.85}{T_C} \ll \text{K. w. } \checkmark$ $T_C = 385 \times \frac{1.00 \times 1.85}{2.80} \ll = 254.4 \text{ K. w. } \checkmark$		2

(Question 7 continued)

Question		on	Answers	Notes	Total
7.	b		work done = $\langle p \Delta V = 1.00 \times 10^6 \times (1.85 \times 10^{-4} - 2.80 \times 10^{-4}) = N - 95 \text{ «J} $	Allow positive values.	
			change in internal energy = $\frac{3}{2}p\Delta V = -\frac{3}{2} \times 95 = \mathbf{w} - 142.5 \text{ «J» } \checkmark$		3
			Q = −95 − 142.5 ✓		
			«-238 J»		
7.	С	i	net work is 288 – 238 = 50 «J» ✓		
			efficiency = « $\frac{288 - 238}{288}$ = » 0.17 √		2
7.	С	ii	along B→C ✓		1

Option C — Imaging

C	Question		Answers	Notes	Total
8.	а		each incident ray shown splitting into two ✓ each pair symmetrically intersecting each other on principal axis ✓ for red, intersection further to the right ✓	For MP3, at least one of the rays must be labelled.	3
8.	b	i	rays diverge after passing through lens OR the extension of the rays will intersect the principal axis on the side of incident rays/as if they were coming from the focal point/points in the left side/OWTTE ✓	-	1
8.	b	ii	by placing a diverging lens next to the converging lens OR make an achromatic doublet ✓		1

Q	uestic	on	Answers	Notes	Total
9.	а		proper construction lines ✓ image at intersection of proper construction lines ✓	objective lens objective lens	2
9.	b	i	distance of intermediate image from objective is $\frac{1}{v} = \frac{1}{20} - \frac{1}{24}$ ie: $v = 120$ «mm» \checkmark distance of intermediate image from eyepiece is $\frac{1}{u} = \frac{1}{60} - \left(-\frac{1}{240}\right)$ ie: $u = 48$ «mm» \checkmark lens separation 168 «mm» \checkmark		3

(Question 9 continued)

Q	uesti	on	Answers	Notes	Total
9	b	ii	ALTERNATIVE 1:	Accept positive or negative values throughout.	
			eyepiece: $m = \frac{-v}{u} = \frac{240}{48} = 5$	The sopt positive of fregulate values throughout.	
			AND		
			objective $m = \frac{-v}{u} = \frac{-120}{24} = -5$		
			Total $m = -5 \times 5 = -25$ \checkmark		2
			ALTERNATIVE 2:		
			$m = \left(\frac{240}{60} + 1\right) \times \left(-\frac{120}{24}\right) \checkmark$		
			<i>m</i> = −25 √		

Q	uestic	on	Answers	Notes	Total
10.	а	i			2
10.	а	ii	to have a critical angle close to 90° ✓ so only rays parallel to the axis are transmitted ✓ to reduce waveguide/modal dispersion ✓		1 max
10.	b	i	long path is $\frac{12 \times 10^3}{\sin 84^\circ}$ \checkmark = 12066 «m» \checkmark «so 66 m longer»		2
10.	b	ii	speed of light in core is $\frac{3.0 \times 10^8}{1.52} = 1.97 \times 10^8 \text{ wm s}^{-1} \text{ wm s}^{-1}$ where $\frac{66}{1.97 \times 10^8} = 3.35 \times 10^{-7} \text{ wm s}^{-1}$		2
10.	b	iii	no, period of signal is 1×10 ⁻⁸ «s» which is smaller than the time delay/OWTTE √		1

Option D — Astrophysics

Question		on	Answers	Notes	Total
11.	а		In cluster, stars are gravitationally bound <i>OR</i> constellation not ✓		
			In cluster, stars are the same/similar age <i>OR</i> in constellation not ✓		
			Stars in cluster are close in space/the same distance		
			OR		2 max
			in constellation not ✓		
			Cluster stars appear closer in night sky than constellation ✓		
			Clusters originate from same gas cloud <i>OR</i> constellation does not ✓		
11.	b	i	d=275 «pc» ✓		1
11.	b	ii	because of the difficulty of measuring very small angles ✓		1

Q	uesti	on	Answers	Notes	Total
12.	а	i	$\lambda = \frac{2.9 \times 10^{-3}}{4600} = 800 \text{ mm}$		1
12.	а	ii	black body curve shape ✓ peaked at a value from range 600 to 660 nm ✓		2
12.	а	iii	$\frac{L}{L_{\odot}} = \left(\frac{0.73R_{\odot}}{R_{\odot}}\right)^{2} \times \left(\frac{4600}{5800}\right)^{4} \checkmark$ $L = 0.211L_{\odot} \checkmark$		2
12.	b		$M = \ll 0.21^{\frac{1}{3.5}} M_{\odot} = \gg 0.640 M_{\odot} \checkmark$		1
12.	С		Obtain «line» spectrum of star ✓ Compare to «laboratory» spectra of elements ✓		2
12.	d		red giant ✓ planetary nebula ✓ white dwarf ✓		3

Q	Question		Answers	Notes	Total
13.	а		measured redshift «z» of star \checkmark use of Doppler formula \mathbf{OR} z~v/c \mathbf{OR} $v = \frac{\mathbf{C}\Delta\lambda}{\lambda}$ to find $v \checkmark$		2
13.	b		use of gradient or any point on the line to obtain any expression for either $H = \frac{V}{d}$ or $t = \frac{d}{V}$ or correct conversion of d to m and v to m/s \checkmark = 4.6×10^{17} «s» \checkmark		3